

LA-UR-19-24119

Approved for public release; distribution is unlimited.

Title: E1039/SpinQuest Polarized Drell-Yan Experiment at Fermilab

Author(s): Jen, Chun-Min

Intended for: 2019 APS April, 2019-04-13/2019-04-16 (Denver, Colorado, United

States)

Issued: 2019-05-06

- SpinQuest Target : Arthur's talk
- SeaQuest Spectrometer : Me

E1039/SpinQuest Polarized Drell-Yan

Experiment at Fermilab

Chun-Min Jen on behalf of the SpinQuest (E1039) Collaboration

Fermilab Dimuon Spectrometer: Fixed Target Drell-Yan

(E605 / 772 / 789 / 866 / 906)

- 1) Fermilab E772 (proposed in 1986 and completed in 1988)
 - "Nuclear Dependence of Drell-Yan and Quarkonium Production"
- 2) Fermilab E789 (proposed in 1989 and completed in 1991)
 - "Search for Two-Body Decays of Heavy Quark Mesons"
- 3) Fermilab E866 (proposed in 1993 and completed in 1996)
 - "Determination of $\overline{d}/\overline{u}$ Ratio of the Proton via Drell-Yan"
- 4) Fermilab E906 (proposed in 1999, will run in 2010-2013)
 - "Drell-Yan with the FNAL Main Injector" decommission in spring 2018

Fermilab E1039 (proposed in 2013, will run in 2019-2021) Now, it's commissioning (fall 2018...)

E1039 Collaboration

Rich Physics Extracted from First Polarized Drell-Yan at FNAL

$$A_N = \frac{\sigma_L^{\uparrow} - \sigma_R^{\uparrow}}{\sigma_L^{\uparrow} + \sigma_R^{\uparrow}}$$

- SpinQuest opportunities:
 - ★ Sea Quark Sivers (low-X, < 0.5)
 - \bigstar Gluon Sivers (high-X, > 0.5)
 - **★** Transversity
 - ★ open charm TSSA: charm vs. anti-charm
 - ★ Dark photon and heavy photon

Sea Quark Sivers from global fits

Precise SpinQuest data helps further constrain sea quark Sivers! Systematics uncertainties are critical in high-precision measurements! (See Arthur's talk)

Kang et al, 1401.5078

- SpinQuest data is through QED process w/o:
 - 1. QCD final-state effect
 - 2. fragmentation function of final-state hadrons

three PDFs used to describe KqT and/or Sn/qT

three transversal quantities are

- (1) nucleon's transversal spin (S^{n}_{T}) ;
- (2) quark's transversal spin (S^{q}_{T}) ;
- (3) quark's transversal momentum (K^{q}_{T})

three PDFs are

- (1) + (2): Transversity
- (1) + (3): Sivers function
- (2) + (3) : Boer-Mulders function

four types of Drell-Yen experiments at FNAL are as follows:

- polarized-beam & polarized-target Drell-Yan : Transversity (E10xx)
- polarized-target & unpolarized-beam Drell-Yan: Sivers function (E1039)
- polarized-beam & unpolarized-target Drell-Yan: Sivers function (E1027)
- unpolarized Drell-Yan: Boer-Mulders function (E605, E772, E789, E866, E906)

three transversal quantities are

- (1) nucleon's transversal spin (S^{n}_{T}) ;
- (2) quark's transversal spin (S^{q}_{T}) ;
- → Nucleon Spin
- → Quark Spin
- (3) quark's transversal momentum (K^q_T) "off-diagonal" terms

		Quark polarization			
		Un-Polarized	Longitudinally Polarized	Transversely Polarized	
u.	U	$f_1 = \underbrace{0}_{UU=T_{\text{even}}}$		$h_1^{\perp} = \uparrow$ - \downarrow Boer-Mulder \uparrow	= T ,
Nucleon Polarization	L		$g_1 = $ Helicity	$h_{1L}^{\perp} = \bigcirc - \bigcirc TL =$	=T.
Nucleon	Т	$f_{1T}^{\perp} = \bullet$ - \bullet Sivers	$LT = T_{\text{even}}$ $g_{1T}^{\perp} = \begin{array}{c} & & \\ & \\ & \end{array}$	$h_{1T} = \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ h_{1T}^{\perp} = \begin{array}{c} & & \\ & & \\ \end{array}$	=T.
		UT=Todd	LT=T _{even}	Pretzelosity 31	

More TSSA Measurements (II)

TSSA: Transversal Single Spin Asymmetry

Transverse Single Spin Asymmetries A_N

$$A_{N} = \frac{\sigma_{L}^{\uparrow} - \sigma_{R}^{\uparrow}}{\sigma_{L}^{\uparrow} + \sigma_{R}^{\uparrow}}$$
Left
Right

Theory Expectation:

Small asymmetries at high energies (Kane, Pumplin, Repko, PRL 41, 1689–1692 (1978))

$$A_{_{N}} \propto \frac{m_{_{q}}}{\sqrt{s}}$$

Experiments:

ZGS, AGS, FERMILAB to RHIC

$$pp^{\uparrow} \rightarrow \pi + X$$
 A_N ~ O(10⁻¹) observed

$$\sqrt{s} = 5 \sim 500 \text{ GeV}$$

large TSSAs up to 40% are observed in light hadron-production over a wide range of beam energies (10-10⁴) at forward X_F (>0.5) region, where fractional momentum of transversally polarized nucleon is within 0.1 and 0.5.

More TSSA Measurements (III)

TSSA: Transversal Single Spin Asymmetry

Two Possible TSSA Mechanisms

three transversal quantities are

- (1) nucleon's transversal spin (S^{n}_{T}) ;
- (2) quark's transversal spin (S^{q}_{T}) ;
- (3) quark's transversal momentum (K^{q}_{T})

(1) + (3) PRD41 (1990) 83; 43 (1991) 261

TSSA measurement in polarized DY

three PDFs are

- (1) + (2): Transversity
- (1) + (3): Sivers function
- (2) + (3): Boer-Mulders function

(1) + (2) Nucl. Phys. B396 (1993) 161

Theory: K_T vs Collinear Factorization

- Tran. Mom. Dep. Funs
 - Sivers Fun
 - Collins Fun

- Twist-3 collinear
 - Quark-gluon correl.
 - Gluon-gluon correl.

SpinQuest also sheds light on gluon Sivers!

2018 fall - 2019 summer

El 039 SpinQuest (No)-beam Commissioning

- 1. installation is now ongoing;
- 2. expect initial **BEAM** commissioning in this summer;
- 3. expect brief commissioning in fall and production data taking by the end of this year;
- 4. 2 year of data taking (Dec. 2019 Dec. 2021)

